Tag Archives: athlete

Creating Champions: Road to the Olympics

By Kim Murray, Great Britain skeleton athlete, @KimMurray88

After years as a physiologist in elite sports, I thought I was pretty familiar with the life of an athlete. Then I became one myself: suddenly there was a team of support staff there to help me; numbers were being crunched and I wasn’t the one making the spreadsheet, but a data point on it. In the four years since I switched sides from exercise physiologist to full-time athlete in skeleton, I’ve gained a deeper understanding of the mental and physical challenges that drive an ever better performance.

bench2.gif

I now train full-time in Bath, alongside around twenty other British skeleton athletes. We have a team of coaches, sport science staff and medical support staff working alongside us to produce champions. On a day to day basis I work with a coach, strength and conditioning coach and physiotherapist. However, there is much more going on behind the scenes in terms of planning and data management as well as having access to nutrition, performance lifestyle and psychological support.

The life of an athlete is not quite what I expected. Day to day can be a grind; you must find something more within yourself when you’re tired to complete a session or pick up a new technique. You’re also constantly surrounded by super humans so although to the outside you seem physically unbelievable there is always a lot of internal competition and I can be very hard on myself. What has exceeded my expectations however, is what I have been able to achieve and experience, and the friends I have made in the short time I have been part of the team. You travel for half the year; visiting the most beautiful parts of the winter world, throwing yourself off the top of tracks, hitting 120 plus km/h (74 mph) and calling it work. Some days I just simply cannot believe this is my life.

 

The physiologist in the athlete

Having worked with athletes, I try to conduct myself in a way that I appreciated when working: filling in wellness and training data, minimising moaning, sleeping well, being honest about injury or illness. I remember what ‘athlete behaviours’ I should be striving to demonstrate and more to the point I know why they are important. I’ve spent enough time trying to get buy in from athletes and coaches to know how much more can be achieved when they comply. However, the emotion and enormity of what you’re trying to achieve can get to you; in my case, that is tightly linked with putting my physiology career on pause and the risk I took to follow the skeleton path. It can be a very testing environment and sometimes you just feel like your life is being determined by others or you’re not where you want to be in terms of making progress. In hindsight, these feelings are usually due to fatigue. When tired, you become less rational and the athlete behaviours can slip.

lab_testing

Strength testing in the physiology lab

As the athlete, you’re not always involved in decision making and a lot goes on at a programme level that you don’t see. Our job is to put in the work, hit our goals and to grow as athletes and people. It is important to trust in the vision and direction of the performance director, coaches and support team. However, I sometimes find this difficult because I have a need to know why I do things. Having been part of athlete support teams, I am used to knowing the behind the scenes, so it was quite a big change to not always be a part of those conversations. If I am striving for a certain time on the push track or score on a physio test I ask why. Fortunately, as a more senior athlete I do now get to see more of what goes behind the training plans and goals. The team know my background so I quite often get to see a little more of the spreadsheet, as they know I am interested and will understand. This allows my inner spreadsheet geek to live on!

sprinting_start

Sprinting through a series of light gates is a way of measuring running speed

I don’t get to practise or apply exercise physiology in the way I used to. Yes, we use force plates and light gates, fill in wellness and training data, take part in special projects and so on, but when you’re the subject you’re not exposed to the same level of insight. What I am becoming though, is an expert of my body. How much sleep I need, what food I should eat, how I best warm up, what coaching cues help my performance, when I need more rest, what my peak power is, what a healthy body composition looks like for me. I am also further developing soft skills such as assertiveness, effective communication, team work and resilience. So, whilst I miss working as an exercise physiologist every day, I hope that this break will firstly, fulfil the desire to play the athlete and secondly grant me new skills and understanding from the athlete point of view that will be useful when I do return to work one day. In the meantime, I am giving skeleton my all and focusing on a huge goal: the 2022 Olympics in Beijing!

Exercise now, thank yourself later

by Glenn Wadley, Associate Professor, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Australia.

Endurance exercise and healthy hearts

A wealth of evidence shows that physical activity helps prevent heart disease and all causes of mortality (1) and has benefits for the heart at any age (2): aerobic exercise – often referred to as ‘cardio’ – and in particular endurance-training, is beneficial to the heart. But these effects – in adults – are only temporary and lost soon after training is stopped (3-5). Because of this, it has been assumed until now that the beneficial effects of exercise for the heart are also temporary for young and adolescent mammals, including humans.

shutterstock_140453203

The athlete’s heart – when big is beautiful

Moderate levels of endurance exercise training improve the structure and function of the heart, and makes it grow larger, resulting in what is called athlete’s heart, or physiological cardiac hypertrophy (3-5). This larger heart is beneficial and quite distinct from the enlarged hearts observed in disease, which display reduced function, and increased scarring and molecular and structural differences, in addition to heart failure and increased mortality (6). In contrast, athlete’s heart can improve quality of life, since people with a physiologically healthy, bigger heart will pump more blood and thus can train harder at any given age (7). This effect is of particular benefit as adults get older.

The workhorse cells of the body – cardiomyocytes

 In the heart, specialised muscle cells do the heavy lifting: they are called cardiomyocytes, and are highly resistant to fatigue. The adult human heart contains several billion cardiomyocytes and their coordinated contraction produces around 100,000 heartbeats per day, every day.

shutterstock_159810494.jpg

Cardiomyocytes up close.

Until recently, we thought that the number of cardiomyocytes in mammals’ hearts was fixed shortly after birth. Adult cardiomyocytes don’t get renewed or multiply much, so we thought that the heart grew larger in response to training because the existing cardiomyocytes grew larger, rather than because there were more of them.

However, our recent study has established that an increase in cell number also plays a considerable role in cardiac growth in response to just four weeks of moderate intensity exercise, if the training is conducted during juvenile life, which is 5-9 weeks of age for a rat. This training period would be equivalent to late childhood and puberty in humans. We also found that this effect of exercise on cell number diminishes with age and is lost by adulthood. Indeed, when the same exercise training program is conducted in adolescent rats (11-15 weeks of age, or around the time of late puberty and reproductive maturation in humans), there is a much smaller impact on cardiomyocytes multiplying. In adult rats, heart mass and cardiomyocyte size still increase following exercise training, but without any increase in cardiomyocyte number. Clearly, endurance exercise is beneficial for the heart at any age, but it appears that a window of time exists in the younger heart whereby exercise might be able to grow more cardiomyocytes.

DIfahLiW0AEion_

With regards to the benefits of juvenile exercise for the heart, perhaps the most compelling finding is that the increased heart mass and around 40% increase in cardiomyocyte number remain well into adulthood. What’s more, this increase in cell number is sustained despite the rats being couch potatoes for a prolonged period of time – the equivalent of 10 years in humans! Having more cardiomyocytes potentially makes the heart better equipped for the structural and functional challenges of adult life. For example, in the UK, the 915,000 survivors of heart attack (8) are left with a heart containing up to 25% fewer cardiomyocytes (9) that are not replaced, along with a large degree of scarring and fibrosis. Thus, having more cardiomyocytes saved up for a rainy day could be a handy reserve if you are unfortunate to suffer a cardiac event.

There are already plenty of good reasons to exercise regularly and we know exercise is beneficial for heart health at any stage of life. However, should these recent findings translate to humans they would provide a new reason to ensure there are sufficient opportunities for children to engage in regular physical activity in school curricula. Importantly, our research suggests that there may be long-term cardiac benefits of physical activity for all children, even if the children do not continue with regular exercise in adulthood. Unfortunately, we know the majority of children do not meet physical activity recommendations (10) and therefore their hearts may be missing out on the best start to life.

References:

  1. G. Erikssen, Sports medicine (Auckland, N.Z), 2001, 31, 571-576.
  2. S. Lachman, S. M. Boekholdt, R. N. Luben, S. J. Sharp, S. Brage, K. T. Khaw, R. J. Peters and N. J. Wareham, Eur J Prev Cardiol, 2017, DOI: 10.1177/2047487317737628.
  3. O. J. Kemi, P. M. Haram, U. Wisloff and O. Ellingsen, Circulation, 2004, 109, 2897-2904.
  4. R. C. Hickson, G. T. Hammons and J. O. Holloszy, Am J Physiol, 1979, 236, H268-272.
  5. D. S. Bocalini, E. V. Carvalho, A. F. de Sousa, R. F. Levy and P. J. Tucci, Eur J Appl Physiol, 2010, 109, 909-914.
  6. B. C. Bernardo and J. R. McMullen, Cardiology clinics, 2016, 34, 515-530.
  7. R. J. Shephard, British journal of sports medicine, 1996, 30, 5-10.
  8. British Heart Foundation, BHF CVD Statistics Factsheet – UK, https://www.bhf.org.uk/statistics
  9. M. A. Laflamme and C. E. Murry, Nature, 2011, 473, 326-335.
  10. Australian Bureau of Statistics, Australian Health Survey: Physical Activity, 2011-12. 2013. http://www.abs.gov.au/AUSSTATS