Category Archives: Women in Physiology

Blended learning in physiology – merging new technologies with traditional approaches

By Louise Robson, @LouisescicommDepartment of Biomedical Science, University of Sheffield, United Kingdom

Learning and teaching in physiology has undergone something of a revolution over the last 30 years, and as someone who had their very first teaching experience back in 1989 (running tutorials as a PhD student) I speak from experience! One of the biggest changes has been around digital technologies, bringing benefits and challenges to both students and staff. However, while there are challenges (e.g. information overload), for me the benefits far outweigh any challenges digital technologies generate.

I teach ion channel physiology, and aim for students to not only understand the ideas and concepts in this area, but also be able to apply these to novel experimental data. For this reason, I use data handling and interpretation exercises in my modules, i.e. students utilise mathematical approaches, interpret their data and draw on data from other sources. One thing that certainly hasn’t changed is that students struggle with mathematics, and I suspect I am not the only academic to observe a sea of white faces when I have equations on my slides!  However, my modules are very popular, despite the complex mathematics. The reason for this is my blended learning approach to teaching, matching traditional teaching with digital technologies.

lc guide dark_page_1

Figure 1:  Top tips for students on using lecture capture. Click here for more details: https://osf.io/edmzf/ (E, Nordmann et al, 2018).

In this approach, recorded lectures introduce calculations underpinning physiological mechanisms,  so that students can revisit to help their understanding. I have been using lecture capture for several years, and my experience is that it enhances learning. I have observed an increase in academic performance in my final year modules, and the types of questions students ask are more insightful. They utilise the captures to get to grips with the lecture content and their higher level questions are then often about the published literature. Of course if you are providing captures it is really important that students understand how to use these. Work by a cross-institutional group of academics, of which I am a member, has recently provided top tips for students and staff on using lecture capture, also presenting these in a student-friendly infographic format, Figure 1 (E, Nordmann et al 2018). his work highlights an important but often forgotten aspect of learning and teaching, share your ideas and experiences and collaborate with others.  

The best way to learn is to do, and my students complete formative data handling workbooks that reinforce lectures and provide additional guidance. This allows students to develop skills in a low risk environment, and feed-forward and improve for the assessments. Problem solving classes require students to apply their knowledge and skills, providing an opportunity for personal feedback. I also provide dynamic maths videos for them to view. Using a variety of approaches allows students to work in the way they find most beneficial (one size does not fit all in education). The final module session tests knowledge and understanding using the interactive Lecture Tools platform, allowing students to test knowledge and understanding. This blended approach provides an enhanced learning experience for the students, and is clearly appreciated by them, as they have voted me best Biomedical Science Lecturer at Sheffield several years in a row.  

Many of you reading this article may be in the early years of your academic careers, and while there is lots of advice on developing your research profile, there is often less structured support on developing learning and teaching. So here are my top tips:

  1. Get experience early on.  I started as a PhD student and continued to gain experience as a postdoctoral researcher.  
  2. Seek advice from experienced individuals.
  3. Identify the key developments in learning and teaching, and give them a go.
  4. Evaluate what you do.  Some things will work (but not everything).  Don’t forget ethical approval if you want to publish.
  5. Document innovation as you go.  In research, outputs are easy to define.  In learning and teaching, it’s not so easy!
  6. Always think about what is best for your students (note, it’s not always what they want).
  7. Share your ideas and collaborate as much as possible.  

I hope you have found this article useful, and that you have been able to identify some ideas for your learning and teaching development (if you want more information, just ask)!    

References

E, Nordmann, CE, Kuepper-Tetzel, L, Robson, S, Phillipson, GI, Lipan, P, McGeorge (2018). Lecture capture: Practical recommendations for students and lecturers (pre-publication): 10.31234/osf.io/sd7u4

Putting visual information into context

By Nathalie L. Rochefort and Lukas Fischer

The cerebral cortex is the seat of advanced human faculties such as language, long-term planning, and complex thought. Research over the last 60 years has shown that some parts of the cortex have very specific roles, such as vision (visual cortex) or control of our limbs (motor cortex).

While categorizing different parts of the cortex according to their most apparent roles is convenient, it is also an oversimplification. Brain areas are highly interconnected, and studies over the past decade have shown that incoming sensory information is rapidly integrated with other variables associated with a person or an animal’s behavior. Our internal state, such as current goals and motivations, as well as previous experience with a given stimulus shape how sensory information is processed. This can be referred to as the “context” within which a sensory input is perceived. For example, we perceive a small, brightly-colored object differently when we see it in a candy store (where we might assume it is a candy) compared to seeing it in the jungle (where it might be a poisonous animal). In our recent article published in Cell Reports, we investigated the factors that impact the activity of cells in the visual cortex beyond visual inputs as animals learned to locate a reward in a virtual reality environment.

Researchers have known since the 1960s that cells in the primary visual cortex exhibit striking responses to specific features of the visual environment such as bars moving across our visual field or edges of a given orientation. The traditional view of a hierarchical organization of the visual system was that primary visual cortex encodes elementary visual features of our environment, and then forwards this information to higher cortical areas which, in turn, take these individual visual elements and combine them to represent objects and scenes. Our understanding of how an animal’s current behavior influences information processing, however, was limited. Recent studies have started to address this question directly and found that neurons in primary visual cortex show more complex responses than expected. We have set out to use cutting-edge technological advances in systems neuroscience to understand what type of information is processed in the primary visual cortex of awake animals as they learn to find rewards.

A window into the brain, literally

We have combined two recent technologies to record from a large number of individual neurons in primary visual cortex while mice were awake and free to run. An advanced microscopy technique, two-photon calcium imaging, allowed us to visualize the mouse brain and record the activity of hundreds of neurons through a small implanted window.

A key challenge with this technique, however, is that the mouse head has to remain fixed. We, therefore, constructed a virtual reality system in which an animal was placed atop a treadmill, surrounded by computer screens displaying a virtual environment within which they can freely move while their head remains in the same place. The virtual environment consisted of a linear corridor with a black-and-white striped pattern on the wall and a black wall section (visual cue) in which the mouse could trigger a reward (sugar water) by licking a spout. This allowed us to train animals to find rewards at a specific location within the virtual environment while simultaneously recording the activity of neurons in the visual cortex.

More dedicated neurons, more reward

Our first, unexpected, finding was that after learning the task, a large proportion of neurons (~80%) in the primary visual cortex were responding to task-specific elements, with many cells becoming specifically more active when the animal approached the reward area. Interestingly, the number of these “task-responsive” cells strongly correlated with how well the animals performed the task. In other words, the more precisely animals were able to locate the reward location, the more cells we found to be active around that location of the virtual corridor in the visual cortex. This was surprising as neurons in the visual cortex clearly seemed to be as interested in where the animal could get a drop of sugar water, as the visual features of their surroundings. To test the impact that the visual reward cue (black wall section) itself had on the activity, we removed this cue and found that some neurons still responded at the rewarded location. This suggests that these neurons in the visual cortex were no longer only depending on visual information to elicit their responses.

Visual inputs matter, but sometimes motor-related inputs matter more

These results opened up a number of interesting questions about what is driving these responses as it was clearly not only visual inputs. We wanted to understand the factors driving this activity in the visual cortex. Mice could use two strategies to locate the reward when no visual cue was present to indicate the reward point. The first strategy relies on their internal sense of distance based on feedback from the motor systems (motor feedback). In other words, an estimate of how far a mouse has traveled based on how many steps they have taken since the beginning of the corridor. The second strategy would be to rely on an estimate of position based on the way the visual world moves past the animal, known as “optic flow.”

We took advantage of the unique opportunities in experimental design afforded by a virtual reality system to test which information is driving those reward-location specific responses. By creating a mismatch between the animal’s own movement on the treadmill and the visual movement of the external virtual environment, we were able to test whether it is motor feedback or visual flow that determines where the animal thinks it is along the corridor, and, correspondingly, where these neurons representing the reward location become active. The results showed that animals expected the reward location primarily based on motor feedback. This means that there are some neurons in the primary visual cortex that encode information related to the location of a reward, based on an animal’s motor behavior rather than purely visual information.

However, in our final experiment, the importance of visual inputs became clear again: when the visual cue indicating the reward location was put back in, while still maintaining the mismatch between treadmill and virtual movement, the animal’s behavior, as well as the neuronal responses, snapped back to the visual cue, disregarding the number of steps it had taken. This suggests that motor feedback is available to and used by the primary visual cortex, but in a conflict situation, the visual cues indicating a specific location, override other types of information to correctly locate a reward.

Conclusion

These results demonstrate the importance of behavioral context for sensory processing in the brain. The primary visual cortex, a region that was once thought to primarily represent our visual world by detecting elementary visual features such as edges, is also influenced by prior experience, learning, and interactions with our environment. A prominent model proposed to explain sensory cortical function, posits that the cerebral cortex creates a representation of what we expect, based on current sensory inputs and previous experience.

Our results are congruent with this model while emphasizing the large role of contextual factors, such as motor feedback and prior knowledge of a location. Future studies are necessary to determine how different types of inputs to sensory regions of the brain influence the activity of individual neurons and how they shape our perception of the world.

These findings are described in the article entitled The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex, recently published in the journal Cell ReportsThis work was conducted by Janelle M.P. Pakan from the University of Edinburgh, the Otto-von-Guericke University, and the German Center for Neurodegenerative DiseasesStephen P. Currie and Nathalie L. Rochefort from the University of Edinburgh, and Lukas Fischer from the University of Edinburgh and the Massachusetts Institute of Technology.

This blog originally appeared on the website Science Trends.

Nathalie L. Rochefort has been awarded the 2018 R Jean Banister Prize Lecture. The prize is awarded to early career physiologists in the late stages of a PhD, postdoc or who are in an early faculty position. It was established in 2016 in memory of a former Member of The Physiological Society, (Rachel) Jean Banister who left a legacy to The Society when she passed away in 2013.

The Myth of a Sport Scientist

Back in school, I was a sporty student taking part in a plethora of activities from netball and hockey, to kayaking, tennis and 1500m, but I was never keen on becoming a professional athlete. I was always nominated for the sport day events and typically took charge as captain. When looking at my A-level choices and what career to follow, I naturally pursued the sport route, aligning with topics such as physical education and biology.

Then, when it came to higher education, studying sport science was at the top of my list. Whilst visiting institutional open days, and speaking to friends, family and teachers, it became apparent that there was a mismatch between the perceptions of what a sport scientist is about and what skills it entails. Here I present some top common misconceptions of being a sport scientist.

shutterstock_68427070bw.jpg

Myth #1: You have to be an elite sportsperson

This is my pet hate and the main myth I try to debunk! It is not true that a sport scientist has to be good at sport; yes it can sometimes help to have an interest in physical activity, exercise or sport, but you don’t have be a Messi or Ronaldo. The whole benefit of studying sport science is that you can inspire anyone from the inactive to the elite. Studying sport science is more about being interested in the application of science to the interpretation and understanding of how the body responds to exercise. It involves expertise across a range of scientific disciplines including physiology, psychology, biomechanics, biochemistry, anatomy, and nutrition.

shutterstock_188507768

Myth # 2: You are either a physical education teacher or a coach

Another persistent myth about being interested in sport and studying sport science is that you run around a rugby pitch with a whistle. As much as I respect the talents and skills of PE teachers and coaches, and although many of our students may go into these careers, these are not the only skills and applications of a sport scientist. Sport scientists can be performance analysts. Or they may specialise in exercise physiology. They may even go into marketing, rehabilitation, PR, sport media, or education. The diversity and depth of transferable skills means that there are a variety of options and directions to take, whether you want to help improve the health and wellbeing of a population through exercise plans or the recovery of injured athletes. I always had an interest in teaching sport or science. It was during my PhD that I became aware of the opportunities and careers in academia. Then, becoming a lecturer became my focus, combining my love of the subject and passion for the research!

Finally, Myth #3: It’s not a ‘real’ science

This final myth really bothers me, and is most applicable to the research aspect of my job. It can be frustrating when we are not as respected in the field of science, where some say it’s not a ‘real’ science’. Many of us who are in the field of sport science are specialised in a discipline. For me, it was exercise physiology and biochemistry.

86516866(1)

As an exercise physiologist, I am specifically interested in the relationship between the use of exercise as a stressor and how the body responds at a cellular level with specific use of biochemical and immunological analytical techniques. Just because we use models of sport performance, exercise bouts or physical activity sessions, doesn’t mean that there aren’t complex scientific skills, theories, analytics and techniques behind the work. My primary research focuses on how the immune system and metabolism help our skeletal muscles repair after physical activity, exercise, and training. My current research is about ultra-endurance running profiling of endurance performances, rehabilitation techniques for muscle damage and inflammation, and the use of exercise plans in management of diseases such as type 2 diabetes.

With the developments and interest in sport across the nation following events such as the 2012 and 2016 Olympics, and other events such as Wimbledon, the Football leagues and the Rugby World Cup, hopefully people are starting to realise how sport science can advance sport performance and health.


Dr Hannah Jayne Moir is a Senior Lecturer in Health & Exercise Prescription, at Kingston University, London. Her research is driven in the discipline of Sport & Exercise Sciences and she is co-chair and theme leader for the Sport, Exercise, Nutrition and Public Health Research Group.

This post is part of our Researcher Spotlight series. If you research, teach, do outreach, or do policy work in physiology, and would like to write on our blog, please get in touch with Julia at jturan@physoc.org.

Wikipedia, women, and science

Every second, 6000 people across the world access Wikipedia. The opportunity to reach humans of the world is enormous. Perhaps unsurprisingly, many eminent scientists, especially eminent female scientists, don’t have pages!

Melissa Highton is on a mission to fix this. Her first step was bringing together a group of students and librarians for an Edit-a-thon to update the page of the first female students matriculated in the UK, who started studying medicine at the University of Edinburgh. They’re known as the Edinburgh Seven.

Not only do Edit-a-thons provide information for the world, the Edinburgh Seven serve as role models for current students studying medicine at the University of Edinburgh.

Melissa shines light on Wikipedia being skewed towards men, and also on structural inequalities that lead to so few women having pages. Women are often written out of history; they are the wives of famous someones who get recognised instead, they get lost in records because they change their last name, or they juggle raising a family, meaning they don’t work for as long or publish as much.

Slide01

Having a forum to talk openly and transparently about these inequalities is one of the steps to closing the gap. Our event for Physiology Friday 2017 did just that, and we hope participants will continue the conversation. Listen to Melissa’s talk here.

 

Watchers on the wall: Microglia and Alzheimer’s Disease

By Laura Thei, University of Reading, UK

The watch, worn by years of use, sits ticking on our table for the first time in two years. It has a simple ivory face and is the last memorabilia my partner has from Grandad Percy. Percy passed from us after a long personal battle with dementia, specifically Alzheimer’s disease. It is in his name that my partner and I will take to the beautiful winding pathways beside the Thames, to raise money for the Alzheimer’s Society.

We will be taking part in a 7 km Memory Walk, with thousands of others, some my colleagues from the University, each sponsored generously by friends and families, each who has had their life touched by this disease in some way. Last year nearly 80,000 people took part in 31 walks, raising a record £6.6 million. As a researcher in Alzheimer’s disease, I am acutely aware of every penny’s impact in helping to solve the riddle of dementia.

AlzheimersWalk

Alzheimer’s Society Memory Walk

Alzheimer’s disease is ridiculously complicated. Oh, the premise is simple enough: two proteins, amyloid beta and phosphorylated tau, become overproduced in the brain and start to clog up the cells like hair down a plug. This causes these cells to be deprived of nutrients, oxygen and other vital factors that keep them alive. This eventually causes regional loss in areas specific to memory and personality. It’s simple in theory, but the reality is that we still have much to learn.

Current, extensive research is starting to answer these questions and whilst there is a growing list of risk factors – genetic (APOE4, clusterin, presenilin 1 and 2) and environmental (age, exercise, blood pressure) – confirmation only occurs when a brain scan shows the loss of brain region volume in addition to the presence of amyloid beta and tau. This means that by the time someone knows they have the disease, it’s possible that it’s already been chugging away at their brains for some time.

So we need to push diagnoses earlier. To do that we need to look at the very early stages of the disease, down to a cellular level, to find out how we can prevent the build-up of amyloid and tau in the first place. This is what I, the group I’m in, and many other researchers nationally and globally are striving to do.

AlzheimersWatch

In a non-active state, microglia lie quietly surveying their local area of the brain. ©HBO

I am specifically focusing on the immune cells of the brain, microglia, and their contribution. Microglia are the most numerous cells in the brain. They act as the first line of defence, so their involvement and activation is often seen as an early sign of disease progression. Like all good defences, they tend to be alerted to damage before it becomes deadly. But, like the neurons (the basic building blocks of the brain), microglia are also susceptible to the disease. If they die, does that leave the brain more vulnerable to further insult? That is what I would like to know too!

In a non-active state, microglia lie quietly surveying their local area of the brain. When activated by a threat to the brain, they cluster around the targeted area, changing shape in the process. They then enter one of two states. The pro-inflammatory state releases molecules that attack the harmful pathogens directly, and the anti-inflammatory state releases ones that promote healing and protection of the area.

AlzheimersPatrick

Microglia can change shape to either attack pathogens or protect the area. ©Nickelodeon

With Alzheimer’s, microglia are activated by the accumulation of amyloid, not damage. They absorb the amyloid beta, and in the process, trigger the pro-inflammatory response. This then increases the permeability of the brain’s blood supply, allowing immune cells into the brain to assist removal of the excess protein. However, in the brain of Alzheimer’s patients, the amyloid beta production outdoes the microglia’s ability to remove it. This creates a perpetual cycle of pro-inflammatory response, releasing molecules that can kill cells in the brain. It is unclear whether there is a threshold between beneficial or detrimental in the microglial response.

AlzheimersSquid.docx

Microglial response to fight Alzheimer’s Disease can become detrimental. ©2011 Scott Maynard

Given the importance of microglia in neurodegenerative diseases, a new field of microglial therapeutics has recently emerged, ranging from pharmacologically manipulating existing microglia by switching their response status, to inhibiting microglial activation altogether. Continued research and clinical efforts in the future will help us to improve our understanding of microglial physiology and their roles in neurological diseases.

We’re making progress, but there’s still a long way to go, which is why every penny counts!

Stressing out the immune system

Excerpt from a Physiology News feature by Natalie Riddell, School of Biosciences and Medicine, University of Surrey, UK, @N_Riddell_Immun

Natalie Riddell LatitudeStress can get under our skin. It can influence each and every physiological system, and all of the major contemporary diseases in the UK, including cardiovascular disease, inflammatory disorders, metabolic syndrome, infectious diseases and cancer, have been associated with stress. Stress affects everyone, and levels of anxiety and mental health disorders are increasing with work-related stress now being the second most commonly reported illness in the UK workforce. Over the last four decades, research in the area of Psychoneuroimmunology (PNI) has identified stress induced immune alterations as a potential mediator between chronic stress and ill-health.

In the 1970s, Holmes and Rahe developed a scale to subjectively grade stress, [which inspired our recent survey of stress in modern Britain]. They ranked over 40 different types of life stressors, such as the death of someone close to you, changes in relationship status, work-related stress, even Christmas, and they assigned each stressor a score. The total tally of stress scores that a person had experienced in the last year could accurately predict the likeliness of future illness. This demonstrated that stress and illness were closely related. In the 1990’s, Cohen et al., eloquently demonstrated that psychological stress increased the rates of respiratory infections and clinical symptoms in participants inoculated with the common cold (Cohen, Tyrrell et al. 1993). Subsequent studies revealed that every organ, tissue and cell of the immune system could be altered by psychological stress. The involvement of immune alterations in stress induced diseases was recognised and the field of PNI was born.

Defining stress

Stress is highly subjective. Something that I may class as stressful (watching Arsenal this season), may not be stressful to other people (Tottenham supporters). So how can we define stress? In the 1960s, the psychologist Richard Lazarus introduced the concept that stress is a process consisting of three distinct steps. First, a stimulus (i.e., the stressor) has to be present and perceived. Second, the stimulus initiates a conscious or sub-conscious process whereby the stressor is evaluated in relation to available coping options. If the demands of the situation exceed the ability to cope, then the situation is perceived as stressful. Thirdly, this results in a stress response involving emotional (e.g., anxiety, embarrassment) and biological (e.g., autonomic-endocrine) adaptations. Put simply; stress is a situation or event that exceeds, or is perceived to exceed, the individual’s ability to cope, that then triggers an emotional and biological response.

circadian4

Image: Darryl Leja, NHGRI

The stress adaptation response and immunity

The biological adaptation to stress is activation of the sympathetic nervous system. The same biological response is induced whether the stressor is psychological, such as anxiety or embarrassment, or physical, for example, exercise, trauma or fever. In the case of psychological stress, the individual perceives an inability to cope and this results in the amygdala, a part of the brain that contributes to emotion processing, sending a distress signal to the nearby hypothalamus. The hypothalamus can communicate with the rest of the body via either of two arms of the involuntary nervous system: “rest and digest” (parasympathetic) or “fight or flight” (sympathetic). During stress, this “fight or flight” system is triggered and various physiological changes occur, including an increase in heart rate, respiration and energy production. This promotes survival of the individual by maximising physical capacity to cope with the stressor.

During stress, signalling from the “fight or flight” sympathetic nervous system causes the adrenal gland to secrete the two main stress hormones; adrenaline and cortisol. These hormones can spread and act throughout the body via the circulation. The sympathetic nervous system innervates all of the organs of the immune system, and individual immune cells can directly respond to changes in circulating levels of adrenaline and cortisol. Stress is therefore able to alter every process of immunity, from the initial development of stem cells into early immune cells in the bone marrow, through to the triggering of immune responses to specific antigens in the lymph nodes. Even when in the peripheral tissues, such as the skin or gut, where mature immune cells are most likely to encounter infections, the cells can be regulated by stress hormones. It is therefore unsurprising that the immune system is a modifiable target of stress.

Read Natalie’s full article in our magazine Physiology News to find out how acute stress changes the composition of the blood, and why our Stone Age brain can’t cope with the constant stress of modern life. Her feature takes a more detailed dive into the effects of stress on the immune system’s day-night (circadian) rhythm, and points to stress management as an easy and affordable way to make us healthier.

Reference

Cohen, S., D. A. Tyrrell and A. P. Smith (1993). Negative life events, perceived stress, negative affect, and susceptibility to the common cold. J Pers Soc Psychol 64(1): 131-140.

 

 

Shark Diary, Episode IV: Life on board

Aboard the RV Sanna, our days rotate around meals, fishing, and experiments.

dry fish and musk ox

Our ship is the newest vessel of the Greenland Institute of Natural Resources. Her name, RV Sanna, inspired from ‘Mother of the Ocean’ in Inuit mythology, shows the Institute’s commitment to safeguarding the aquatic environment and to advising governments on the sustainable use of living oceanic resources.

At 32 metres long, Sanna is small for an ocean-going vessel. She is, however, well-designed for scientific research in the marine environment. She is five stories tall, with engines in the bottom and the bridge, where the Captain sits, at the top. Our rooms are above the engines and below the waves.

Sanna_blueprint

The hoverdeck on RV Sanna. Image courtesy of the Greenland Institute of Natural Resources

As the only female scientist aboard, I knew I’d have to share a room with one of the men. I ask for he-who-is-least-likely-to-snore, and that turns out to be Emil. He takes the bottom bunk, I take the top. It isn’t easy climbing up there on the rough seas. When a five-story-tall boat hits rough seas, you can really feel it!

Emil_rough_sea

Rocky ride to the fjords

From Nuuk, the 40-hour transit south to the fjords near Narsaq is really tough. We head down along Greenland’s west coast towards Cape Farewell in gale force winds. The northerly winds hit the ship at around more than 12 metres per second as we get to the open sea and worsen overnight, creating five metre swells waves hitting our ship from all sides. Most of us need to use the patch against seasickness. One of its side effects is blurred vision, so I spend the first few nights half blind trying not to roll out of my bunk.

Rough_sea

Life on board tries to proceed as normal during the onslaught. Our cook Caroline makes a valiant effort to feed us despite the sensation of living inside of a washing machine. At lunch one day, Caroline is caught off-guard by a rogue wave. It hits the ship so hard that she and everything else that is not tied down goes flying five metres through the air and across the room. Chairs break, and dishes in the kitchen fly out of the cupboards and smash!

Living conditions improve when we finally reach the calm waters of the southern fjords, and pull into the port at Narsaq. In the quiet of the harbour, we set up our scientific equipment. Microscopes come out of boxes, chilling water circulators are plugged in, and apparatus used to measure all sorts of forces (like pressure, flow and tension) are calibrated. Most importantly, everything is placed on top of non-slip mats and is tied down, just to be safe. In the evening, we head into town to have a pint, meet the locals, and ask them where the sharks are. The Greenland shark is very common bycatch for the major Greenlandic fisheries (like halibut), so the local fishermen know which fjords harbor sharks of which sizes. We celebrate everyone surviving the 40-hour transit in the rough seas, and buy some more dishes for the galley!

The pub is in a wooden shed, serves local microbrews, and features a band playing Greenlandic folk songs. I get asked to dance by an elderly Greenlander. I don’t think I have the right moves; we don’t even last a whole song!

We get back to the ship around midnight to find it locked up. The captain must have gone off to bed. We try every door at no avail. Julius valiantly squeezes through the window used to tie the ship off, and lets us in from the cold. We all troop off to bed right away, as we need to be fresh for pulling up the longlines bright and early in the morning.

How to catch sharks, and only sharks

lonf lining from frdcdotcomdotau

Long line fishing. Image courtesy of the FRDC

Longlining is a fishing technique we use because the sharks swim up to 1.5 kilometers deep. The longline is the main line of reel that starts and ends with a buoy that floats on the top.  Between the buoys, our longlines sit at around 200 metres deep. From that main line, are a series of lines that end with baited hooks. These secondary lines are between 100 and 200 metres long. You can vary the depth of each set of lines to place the hooks in the part of the water column where you expect your fish to be. We usually set one or two longlines each morning and evening.

Each of our sets of lines has about ten hooks baited with ringed seal that we buy from local hunters. Seal meat is a common food in Greenland, but apparently sexually mature males don’t taste very good, so this is what we buy to bait the hooks. Seal meat is very oily and attracts the sharks better than other fish-based bait. Stomach content analysis confirms that these sharks eat seal. In fact, their stomachs contain whole seals suggesting that they sneak up from the depths and swallow the sleeping seals whole!

Setting_longline   Longline

Longline fishing has been criticized, especially in commercial fisheries such as for swordfish, because of the large amount of bycatch: the other marine creatures that are caught unintentionally. It’s a major problem for fisheries and is something that governments, environmental groups, and commercial fisheries are working to reduce globally. Our crew knew the correct combination of bait, depth and positioning needed to prevent bycatch. In our ten days of setting longlines, we caught 27 Greenland sharks, and had no bycatch whatsoever.

Follow #SharkDiary on Twitter to see all the updates about the expedition.


This expedition was made possible by funding from the Danish Centre for Marine Research, the Greenland Institute of Natural Resources, The Danish Natural Science Research Council and the Carlsberg Foundation.