Category Archives: Physiology News

Articles pulled from our magazine, Physiology News.

Collaboration: Friend or Foe

This article originally appeared in our magazine, Physiology News.

By Mike Tipton, @ProfMikeTiptonUniversity of Portsmouth

It can be argued that, in the broadest sense, we would not exist without collaboration. It is also easy to argue that our future health, prosperity, and indeed, survival will be dependent on collaboration. However, collaboration is something of a conundrum. Its meaning and usage are so broad as to be almost meaningless, and as a concept it covers a multitude of scenarios, not all of them good. So how do we foster enduring, productive collaboration in science? 

Many people love the idea of collaboration, they pursue it with vigour, offering their services and proclaiming their interest in a project.Others are not keen on collaboration. For most, their view of collaboration largely depends on past experience or worries about future recognition. The problem is that there is a contradiction that runs through “collaboration”, right down to its definitions: a. The action of working with someone to produce something b. Traitorous cooperation with an enemy. Hopefully academic collaboration falls under the former rather than latter definition, but perhaps not always.

Collaboration in nature: lessons for scientists

There is no doubt that collaboration can be a driver for advancement, and even optimal advancement. This is easy to demonstrate in biological terms; for example over a billion years ago one bacteria became host to another, obtaining shelter in return for the production of energy from food and oxygen. Eventually the bacteria merged into a single cell that became the ancestral powerhouses of all multicellular life and the precursors to mitochondria. Today, examples of successful collaboration abound, from the African Oxpecker, and their aquatic equivalent, cleaner fish, to bacteria such as Lactobacillus that inhabit human intestines and help to relieve Irritable Bowel Syndrome, Crohn’s disease and gut dysbiosis. As Darwin said, “in the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed.”

What can we learn from the animal kingdom that might help our collaborations with other scientists? The obvious lesson is that those collaborations between organisms that endure are symbiotic rather than parasitic. That is, both collaborators bring something to the relationship and both gain. To coin a cliché, the sum is greater than its constituent parts. Collaborations fail when, in one way or another, they become parasitic. Perhaps we should focus on “symbiosis” rather than “collaboration”?

oxpecker

Figure 1. Collaborators seeing eye to eye: a symbiotic collaboration between the African Oxpecker and the African Cape Buffalo. One feeds, the other has parasites removed.

Scientific collaboration: the benefits

At one level, of course, all science is the product of a collaboration between colleagues within an institution, be they the technicians, students, academics or administrators that enable and conduct research. But what about collaboration across institutions? This is not an insignificant issue; even more so now than previously, successful collaboration is important for the advancement of research areas as well as scientific careers. As science moves unerringly towards complex, multifaceted studies employing advanced and highly specialised techniques, the need to collaborate nationally and internationally increases. This truth is increasingly being reflected in the published literature, where there is a positive relationship between the presence of international collaborating authors on top flight papers and citation impact (Adams & Gurney, 2016).

People are getting the message; as measured by co-authorship on refereed papers, international collaboration grew linearly from 1990-2005, or exponentially if international presentations are assessed (Leydesdorff & Wagner, 2008). In 1981 about 90 % of UK published research output was domestic, by 2014 this figure had fallen to less than 50 %; almost all of the growth in output in the last 30 years was produced by international co-authored collaborations (Adams & Gurney, 2016). In just the last two issues of Experimental Physiology we have published papers from 15 countries, and of the 22 papers published, 13 were collaborations between a total of 34 institutions. Leydesdorff & Wagner (2008) used network analysis to conclude that the growth of international co-authorship can be, at least in part, explained by the organising principle of preferential attachment (“the rich get richer”). Broadening collaboration should therefore be advantageous.

fig2.jpg

Figure 2. Relative increase in international collaborative publications (articles & review indexed in Thomson Reuters Web of Science) since 2000 (Adams & Gurney, 2016). 

The major driver for collaboration is the need to share, be that ideas, equipment, facilities, techniques, resources or data. Without successful collaboration between experts within different fields, some major problems will either not be solved or will take much longer. For example, it is generally agreed that the battle against cancer cannot be won without such collaboration (Savage, 2018). Looking back, without collaboration we would have been less likely to know of the existence of the Higgs Boson or have sequenced the human genome. It is difficult to imagine the big questions of our time, such as understanding the working of the brain, the origin of the universe or the production of clean sustainable energy, being solved without interdisciplinary collaboration. The need for collaboration to provide the diversity of skills and techniques to answer these questions is paramount.  

The UK government is actively encouraging such collaboration through initiatives like the UK Research and Innovation (UKRI) Fellowships Programme. The Industrial Strategy Challenge Fund looks to build collaborations between academics and business. One of the six key areas is “Health and Medicine”. Research England recently invested £67m in 14 collaborative projects to “drive forward world-class university commercialisation across the country”.

Promoting collaboration: opportunities and threats

So, how do we create the conditions that might promote successful symbiotic collaboration within, but even more importantly, across disciplines? We start with an advantage; game theory (e.g. The Prisoners’ Dilemma) research tells us that humans display a systematic bias towards cooperative behaviour in preference to otherwise rational self-interest (Fehr & Fischbacher, 2003). So, we need to foster this altruistic inclination and minimise the threats to collaboration.

Publishing has a role to play in promoting collaboration; since the first issue of the Philosophical Transactions of the Royal Society was disseminated in 1665, potential collaborations have been promoted by the publishing industry reporting what could be done by other people working in the same field. A relatively recent development is the publication of datasets that can be examined and used by others, a new and as yet not fully evolved form of “collaboration”. On the other hand, publication can also be a barrier to collaboration: concerns about recognition of effort, authorship and ownership of ideas or data can introduce anxiety and suspicion. These problems can be minimised by early, open discussion, by scientists, and by journals giving high value to ideas. Following established guidelines for authorship should also help (e.g. International Committee of Medical Journal Editors Guidelines (2017).

Other threats to collaboration come in the form of international politics: BREXIT and access to EU funding, the rise of nationalism, travel bans, language barriers and difficulties in getting work permits. This is a constantly changing canvas within which scientists and leading institutions must lobby and advocate the crucial societal benefits of international collaborative research. Hopefully continued access to international and pan-continental research funding that demands international collaboration will help.  

The role of publishing in prompting collaboration is reinforced by scientific meetings where you meet, learn from and socialise with those working in your field. Having determined from the literature and scientific presentations those who you might work with, it is during social exchanges at meetings that you discover people you want to work with. One potentially negative consequence of subject-specific meetings is that they constrain the technical and academic cross-fertilisation, and consequent collaboration, that might be promoted at more multi-disciplinary meetings.

If we continue to use co-authorship with an individual from another institution as the index of collaboration, I have collaborated with 71 people from 15 countries over three decades (e.g. International Drowning Researchers’ Alliance- idra.world). As far as I can recollect, all of these collaborations, and subsequent close friendships, were forged in the conducive atmosphere of a scientific meeting. It follows that any decline in funding to attend scientific meetings will stifle potentially critical collaborations. It also follows that although, as noted above, it is possible to encourage or require collaboration through targeted funding calls, in the absence of such funding it is very difficult to “administer” long-lasting productive collaborations into existence from nowhere. They have to evolve naturally, through interpersonal contact and understanding of the skill sets and capabilities of different people.

That is not to say that people who do not get on personally cannot collaborate; it is simply that the holistic experience and durability of the collaboration is likely to be diminished. Because, in the end, it is about spending time with those you respect, like, need and can communicate freely with. As in so many other things, Shakespeare had it about right,

Those friends thou hast, and their adoption tried,

Grapple them unto thy soul with hoops of steel

For a scientist, as well as society in general, the benefits of collaboration go far beyond science.

Acknowledgements

I would like to thank Alex Stewart, Sarah Duckering and Joe Costello for their contributions to this article.

 

Early to bed and early to rise… makes a teen healthy, wealthy and wise? (Part 2)

By Gaby Illingworth, Rachel Sharman & Russell Foster; @OxTeensleep, @gabyillingwort1, @DrRachelSharman, @OxSCNi

To the possible dismay of parents hoping to start the family day bright and early, teenagers hit the hay and wake up at increasingly later times during adolescence – a delay of between one and three hours compared to pre-pubertal children.

Teenagers struggle to fall asleep early but still need to wake up for lessons during the school week, which contributes to a reduction in time spent asleep. At the weekend, the morning hours may well be spent snoozing to “catch-up” on lost Zzz’s.

In 2015, the National Sleep Foundation recommended that teenagers, aged 14 to 17 years, should be getting eight to ten hours of sleep a night. However, across the globe, teenagers are routinely not getting enough sleep, with older adolescents more likely to have insufficient weekday sleep than early adolescents. One of the consequences of insufficient sleep is that sleepiness during the day is common in this age group.

Sleep researchers have suggested some mechanisms behind this change in teenagers’ sleep timing.

How teenagers become owls: slower clocks, increased light sensitivity, or decreased sleep pressure

Although we don’t know why adolescent sleep changes, we do know that changes occur in the two processes which govern sleep – the circadian rhythm and sleep/wake homeostat. (Catch up on these two concepts in our previous post.)

The teenage biological clock has been proposed to run more slowly at this age, driving their sleep timing later, meaning their chronotype becomes more owl-like.

3675503072_d90dda1970_b

From DIVA007 on Flickr

Another suggestion is that their biological clock might be more sensitive to light in the evening (delaying sleep) and less sensitive in the morning (making them wake up later).

Adolescent sleep pressure is also thought to accumulate more slowly during the day, making them less tired when they reach the evening.

Jetlag without leaving the country

We know what jetlag feels like when we travel across time zones. Our internal time takes a while to adjust to the new external time.

airliner-airplane-flight-3486

Teenagers experience something similar with ‘social jetlag’: when their internal time (chronotype) is misaligned with social time (school commitments). At the weekend, they are more likely to be able to sleep according to their chronotype than during the school week. This misalignment of sleep/wake timing has been shown to associate with poorer cognitive functioning.

To blame the bright screens or not?

Teenagers’ lack of sleep is not all down to physiology. They, just like adults, may be engaging in behaviour that isn’t conducive to sleeping well.

The effect of light exposure on sleep has received increasing attention with the proliferation of electronic device use in recent years. However, the results are mixed.

One study on young adults asked individuals to read an e-book at maximum intensity under dim room light for around 4 hours (18:00–22:00) before bedtime on five consecutive evenings, whilst the control group read a printed book.

While the study concluded that those that read the e-book took longer to fall asleep, had lower morning alertness, and a delay of the circadian clock compared to reading a printed book, the effects were relatively small. Those participants who read e-books took only 10 minutes longer to fall asleep (Chang et al., 2015).

iphone_phone_cell_smartphone_device_communication_mobile_screen-851224

As a result, some caution needs to be exercised when the press reports that reading an e-book before bed has unintended biological consequences that may negatively affect performance, health, and safety.

Nevertheless, the impact of using electronic devices prior to sleep does seem to be important. In a large US survey, adolescents were shown to have increased the time spent using electronic media devices from 2009 to 2015.

This was correlated with a decline in sleep duration (Twenge et al., 2017), and light from such devices has been blamed. Such studies have encouraged the use of in-built or downloadable applications that can dim the brightness of screens and/or reduce the light emitted.

Light interventions are now being considered as a tool for adolescents experiencing difficulties with sleep, including reducing their exposure to evening light and increasing morning light to advance the clock to a time more suited for school.

Unfortunately, the evidence showing that such interventions can be helpful is lacking. Furthermore, it is important to stress that game use, social media, and watching TV are all likely to be cognitively arousing so teens may simply feel like staying up when they use electronic media devices.

As a result, disentangling the light effects versus the alerting effects of devices is complex and awaits good experimental studies.

Highly caffeinated

 

8170855486_b088ac9259_b

From Austin Kirk on Flickr

Caffeine is a stimulant with a half-life of approximately six hours in healthy adults (meaning that half of it is broken down in our bodies in six hours). It works by preventing the molecule adenosine, which promotes sleep, from having its effect in the brain, thus promoting wakefulness.

Teenagers are advised to consume no more than 100mg of caffeine per day, yet highly-caffeinated energy drinks are popular among teens. Many energy drinks contain higher caffeine levels than 100mg in a single can. Consuming caffeine later in the evening, or consuming it excessively throughout the day may be another contributory factor to delayed sleep.

Correspondingly, the National Sleep Foundation 2006 ‘Sleep in America’ poll found that adolescents who drank two or more caffeinated beverages each day were more likely to have insufficient sleep on school nights, and think they have a sleep problem, than those who drank one beverage or fewer.

We don’t need no early morning classes

School-based interventions are now underway that aim to improve teenage sleep. Sleep education programmes inform teenagers about the lifestyle factors that may be affecting their sleep and how they can improve sleep hygiene.

There is also a movement to delay school start times to better suit the adolescent clock by giving teenagers the opportunity to sleep at hours more aligned with their chronotype and reduce their social jetlag.

Given all the research, one could suggest that “early to bed, later to rise, may help the teen be healthy, wealthy and wise” would be a better amendment to the age-old quote for our average teenager.


References

Chang, A.M., Aeschbach, D., Duffy, J.F. and Czeisler, C.A., 2015. Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences112(4), pp.1232-1237.

Twenge, J.M., Krizan, Z. and Hisler, G., 2017. Decreases in self-reported sleep duration among US adolescents 2009–2015 and association with new media screen time. Sleep medicine39, pp.47-53.

Early to bed and early to rise… makes a teen healthy, wealthy and wise? (Part 1)

By Gaby Illingworth, Rachel Sharman & Russell Foster; @OxTeensleep, @gabyillingwort1, @DrRachelSharman, @OxSCNi

Teenagers are well-known for routinely staying up late and then having a long lie-in. Sometimes this is put down to laziness or their transition from childhood into ‘Kevin the Teenager’.

However, there are biological reasons which help explain why teenagers are late to bed and late to rise, and why they might not actually be getting enough sleep to make them healthy, wealthy, and wise.

pn newsletter 2.JPG

Created by Matteo Farinella

Sleep matters. A wealth of evidence supports the importance of sleep for our physical, mental, and emotional functioning. Insufficient sleep has been linked to problems with attention, creativity, memory and academic performance, as well as increased impulsivity, and difficulties with mood regulation.

Sleep: a double-act

Sleep is driven by two processes working in tandem: the circadian rhythm and the drive for sleep (sleep homeostat).

The circadian rhythm is a roughly 24-hour cycle of changes in physiology and behaviour, generated inside our bodies. These rhythms come from certain genes being turned on and off (called clock genes) in almost all cells throughout the body. The master clock, (the suprachiasmatic nucleus in the brain), coordinates the rhythms within these cellular clocks.

The second system involves a balancing (homeostatic) process. Put simply, the longer you have been awake, the greater the need for sleep will become. The drive for sleep is thought to stem from a build-up of various chemicals (in the brain) while we are awake. For example, adenosine is a building block of our body’s energy currency (ATP), so it builds up as a consequence of energy use in the brain. Adenosine inhibits wake-promoting neurons and stimulates sleep-promoting neurons. As we sleep, adenosine is cleared and sleep pressure reduces.

Sometimes the two systems oppose each other. For example, we would feel very sleepy mid-afternoon due to increasing sleep pressure if it were not for the circadian drive for wakefulness.

alarm-clock-3236146_960_720.jpg

Sleep occurs when the circadian drive for wakefulness ends and the drive for sleep kicks in. Then when the ‘sleep debt’ you have accumulated during the day has been re-paid (and so sleep pressure is reduced), and the circadian drive for wakefulness is sufficiently strong, we wake up.

Why some people don’t like mornings

Some of us love to burn the midnight oil, while others schedule in regular morning runs. The technical term for your preferred sleep/wake timing is chronotype, what we colloquially refer to as being an owl or a lark. You are owl if your biological clock runs slower and a lark if it runs faster.

We don’t run on 24 hours

While our day runs on 24 hours, for most of us, our internal clocks don’t. Therefore, our internal clock needs to be adjusted daily by external time cues such as light intensity. The master biological clock receives light signals direct from cells in the retina, which are most sensitive to blue light.

Dusk triggers the production of melatonin (the ‘vampire hormone’). Although not a sleep-inducing hormone, melatonin serves as a cue for rest in humans, with levels increasing as we approach sleep and remaining high during the course of the night.

In contrast, dawn light suppresses melatonin levels. The circadian clock responds differently to light depending on the timing of exposure, so that morning light advances the clock (making us get up earlier) and evening light delays the clock (making us get up later the next day).

As well as playing a role in sleep regulation via the circadian clock, light affects how alert you feel. You may have noticed that bright light increases your alertness, so relatively bright light before bedtime will increase the likelihood that you will feel sleepier later.

—-

Stay tuned for next week’s blog about how changes in these systems affect teenage sleep.

The female athlete: A balancing act between success and health

By Jessica Piasecki, Manchester Metropolitan University, UK, @JessCoulson90

A longer version of this article originally appeared in Physiology News.

There is a very fine line between training, competition, and recovery for the elite athletes (1). For female athletes, they have an extra balance to take into consideration: the menstrual cycle.

The monthly cycles

The menstrual cycle is a natural process and is essential to maintain bone health and fertility. It can start from the age of 12 and continues until the onset of menopause around the age of 49-52.

The cycle occurs over a period of 28 days. The first 14 days are known as the follicular phase. During this phase, around day 10, the hormones oestrogen, LH (luteinizing hormone) and FSH (follicular stimulating hormone) rise, reaching their peak around day 14.

LH reaches a level double than that of both oestrogen and FSH. After day 14 LH levels rapidly drop off while oestrogen and FSH fall off more slowly, over a 5 day period. The second 14 days are known as the luteal phase and there is a gradual increase in another hormone, progesterone, which reaches a peak around day 22 and returns to base levels at day 28.

shutterstock_388376620_800px

Bone stability and structure

Of these three hormones, oestrogen is a key regulator of bone resorption, without oestrogen there would be an excess of bone being broken down over new bone being formed. Bone is in a state of constant turnover, with the help of two types of bone cells (osteoblasts and osteoclasts). Osteoblasts are involved in bone formation, while osteoclasts are involved in bone resorption.

Bone resorption occurs at a much higher rate than formation; bone resorption takes just 30 days whereas the bone remodelling cycle takes 4 months. Therefore, a slight imbalance can lead to a bone fracture very quickly (2).

More is not always better

Elite female athletes, particularly those involved in sports that usually adopt a leaner physique with low body fat, are at a greater risk of disordered eating. The reasons for this disordered eating could be external pressures from teams, coaches and sponsors, or the athletes themselves having the belief that the leaner and lighter they are, the quicker they will be. These pressures may also cause the athlete to push their body to further extremes.

runner-1488271_960_720

Without the necessary energy intake, the menstrual cycle will most likely become irregular and eventually cease (which is known as amenorrhea). Amenorrhea causes the levels of oestrogen to become reduced, leaving a disproportionate ratio of osteoblasts and osteoclasts, and a higher rate of bone resorption.

This may ultimately lead to bone injuries, (the precursor to osteoporosis), or even osteoporosis at a very young age, making any further career achievements even more difficult.

These three symptoms (disordered eating, amenorrhea and osteoporosis) became more prevalent in the 1990s and were termed ‘The Female Athlete Triad’ in 1997 by the American College of Sports Medicine. It has been estimated that only 50% of trained physicians are knowledgeable about the female athlete triad (3). More recently the triad has been regrouped within a term known as RED-S (Relative energy deficient syndrome); deemed to result from continual disordered eating. Being in a state of energy deficiency for a long duration can disrupt many processes within the body, including the cardiovascular, digestive and hormonal . Redefining the RED-S also allows male athletes who present with similar issues to be included (4).

Current research has looked at the differing effects of the components of the triad on injuries, and bone and muscle health. At Manchester Metropolitan University, we have carried out our own research on some of the UK’s most renowned female endurance runners, investigating the effects of altered menstrual cycle on bone health. Athletes with amenorrhea presented with a greater endocortical circumference (the outer circumference of the inner cortical bone in the tibia (lower leg) and radius (forearm) than controls. Only the athletes with regular menstrual cycles (eumenorrheic) had a greater cortical area, in the tibia and radius, compared to controls. The athletes with amenorrhea had thinner bones (i.e. larger but not denser). We are working to better understand the issues, so accurate diagnosis will become more frequent.

What we really need is education at a young age, as most athletes become familiar with the triad only once they have been diagnosed with a bone injury. If athletes are made aware of the symptoms and issues around the triad before they occur, then nutrition and menstrual cycles can be more closely monitored as they progress through their athletic careers.


Read the full-length version of this article in our magazine, Physiology News.

References

  1. Barnett, A (2006). Using recovery modalities between training sessions in elite athletes does it help? Sports Med (36), 781-96
  2. Agerbaek, M. O., Eriksen, E. F., Kragstrup, J., Mosekilde, L. and Melsen, F. (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner, 12 (2), pp. 101-12.
  3. Curry, E, Logan, C, Ackerman, K, McInnia K, Matzkin, E (2015) Female athlete triad awareness among multispecialty Physicians. Sports Med Open. 1:38.
  4. Tenforde, AS, Parziale, A, Popp, K, Ackerman, K. (2017) Low Bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am J Sports Med. DOI: 10.1177/0363546517730584

Exercise, stress and Star Wars: Best of 2017 roundup

Happy New Year! In 2018, we look forward to more physiology fun, and to giving you an insight into the exciting new developments in the Science of Life!

Physio-what, you ask? Take a look at our animation below introducing physiology! Scroll down to find out more about a centuries-old shark patrolling the deep Arctic Ocean, how being active gives children’s hearts a head start for life, and why it’s time scientists took back control from exercise gurus, in our best of 2017 roundup!

1. Exercise scientists should fight the exercise gurus

Social media apps - With new Google logo

Exercise gurus build strong rapports with their audience to encourage commitment, but they will often simplify a large body of scientific evidence to back up their advice.

In this post, Gladys Onambele-Pearson and Kostas Tsintzas discuss the risks of letting exercise gurus disseminate exercise science to the public, and why it may be time for scientists to become the actual celebrities.

2. The Myth of a Sport Scientist

shutterstock_140453203

There is a mismatch between the perceptions and reality of what a sport scientist is and what skills this career entails: just because exercise scientists use models of sport performance, exercise bouts or physical activity sessions, doesn’t mean that there aren’t complex scientific skills, theories, analytics and techniques behind the work.

Read more from sport scientist Hannah Moir in this post.

3. Shark Diary, Episode I: On the trails of the Greenland shark

Eye_parasite

How do you keep lab chemicals cool when there’s no fridge in your room? Well, if you’re in chilly Denmark, you could just hang them outside your window.

Holly Shiels did just that in Copenhagen, on her way to Greenland to join a team of physiologists on a shark research mission. Their aim was to gather data on the physiology of the Greenland shark. Clarifying how these animals reach hundreds of years of age without developing diseases associated with human ageing, like cancer and heart disease, could lead to new therapies down the line, and understanding shark physiology is also important for their conservation.

Read more about the mission in this post, and check out watch below to see the researchers braving the icy waters of the North Atlantic and releasing a tagged Greenland shark.

4. Breath of the Sith: a case study on respiratory failure in a galaxy far, far away

StarWarsCover

Have you always wondered what actually is going on behind the mask? Darth Vader’s acute respiratory failure appears to be the consequence of a number of factors, including direct thermal injury to the airways, chemical damage to the lung parenchyma caused by inhalation of smoke and volcanic dust particles, carbon monoxide poisoning, as well as secondary effects to his severe third degree burns, which seems to cover ~100 % of his total body surface area.

Read on as Ronan Berg and Ronni Plovsing make a tongue-in-cheek diagnosis of the numerous respiratory ailments of everyone’s favourite Sith Lord.

5. Exercise now, thank yourself later

DIfahLiW0AEion_

Exercise is good for the heart, but the benefits fade soon after we stop training… or so we thought. Studies so far have focused on adults, but research published last November in The Journal of Physiology reveals that exercise in early life could have lifelong benefits for heart health.

This is because young hearts are able to create new heart muscle cells in response to exercise, an ability that is mostly lost in adulthood. Glenn Wadley, Associate Professor at Deakin University and author of the study, explains the findings in this post, and makes the case for children to get active!

As if that wasn’t enough reason to exercise, being active is one of three tips that can help relieve the stress we feel for instance at the approach of exams. Watch our animation below to find out more about what stress does to our bodies, and start making good on those New Year resolutions!

Careers – no ‘one size fits all’ for scientists

A longer version of this article originally appeared in Physiology News.

‘What matters most is how well you walk through the fire’ – Charles Bukowski

The career path of scientists is oft the result of happenstance; a chance meeting at a conference, a quirk in a dataset, a change in personal circumstance. There’s no one size fits all for scientists’ careers. We sought to highlight this with several case studies to encourage you on your way.

The beauty of science is it takes you across borders
by Rebecca Dumbell, Postdoctoral Training Fellow, MRC Harwell Institute, UK

I completed my PhD from the Rowett Institute of Nutrition and Health, University of Aberdeen in 2014. The Rowett had merged with the University a few years before I joined, and combined with the rural location at the time, this meant that it still had the feel of a research institute. Towards the end of my PhD I heard about a postdoc position coming up at the University of Lübeck in Germany through word of mouth. In a bit of a whirlwind I flew out to Germany for my interview the day after submitting my thesis, and I started the job a few months later.

Getting set up in my new job and new country was a challenge. I quickly learned that I needed a lot of documents, all from different offices located very far from each other, and they all had to be collected in a particular order. My EU passport smoothed the process and made my experience much easier than what I witnessed my non-EU colleagues go through. Within 1 week I had everything I needed, including a place to live, a bank account, health insurance and a pension plan.

Lubeck

Lübeck. / Shutterstock

I spent almost 2 years as a postdoc in Lübeck and I really loved living in Germany. Half of my colleagues were German and the rest came from all over the world, all speaking English in the lab. This was a lot of fun and we set up things like ‘international cooking club’ and, my personal favourite, whisky club. I found that as the only native English speaker I was the go-to proofreader; this certainly improved my grammar if not the work I was checking!

I now work at the MRC Harwell Institute in Oxfordshire as a Postdoctoral Training Fellow, and again find myself in a research institute in a rural setting. This comes with its own advantages and challenges. I have to go out of my way to build on my undergraduate teaching experience. But, once identified, these issues are overcome by connecting with people at the nearby University of Oxford, and with my wider professional network.

For me the chance to work abroad is a big draw for a scientific career; it built my confidence and expanded my professional network as well as providing a great experience. Coming back to the UK was right for me at the time but I’d not rule out going abroad again.

PHYSCONF-76

© The Physiological Society

‘Establishing a life outside of work has been vital in putting my work here into perspective, and makes those inevitable scientific frustrations far easier to deal with.’ – Chris Shannon, University of Texas Health Science Centre, USA

The quest for the Holy Grail of lectureship
by Gisela Helfer, Lecturer, University of Bradford, UK

After I graduated in Zoology at the University of Salzburg, Austria, I worked at the Max Planck Institute for Ornithology in Andechs, Germany. Here I found my love for science in general and chronobiology in particular. From Andechs, I started my northwards journey, first to do a PhD at the University of Birmingham and then to postdoc at the Rowett Institute in Aberdeen. Throughout my journey, I was very fortunate to meet some amazing scientists, mentors as well as peers, and it was always my ambition to succeed in academia. Six years of postdocing, three moves and two children later, I finally found the Holy Grail in beautiful Yorkshire. In March 2016, I started my permanent lectureship at the University of Bradford.

Academia has one of the longest apprenticeships that I am aware of. Undergraduate studies, plus/minus masters studies, PhD studies and then several years of postdocing. For me, this totalled to 14 years of apprenticeship. Despite this long training, I was little prepared for the job of a lecturer. Yes, I had some teaching experience. I supervised students in the lab, I occasionally lectured to undergrads and I even worked a few months as a teaching fellow. In my CV I called this ‘extensive teaching experience’ – little did I know. Because in reality I spent all my days and often nights (the joys of circadian rhythms research) in the lab or in the animal house. And I loved every minute of it!

physocc0057784.jpg

© Wellcome Library, London.

Now, I am rarely in the #Helferlab. The brand-new set of pipettes that I proudly bought from my first grant is now exclusively used by my students, while I spend my time rushing from place to place. I run to see undergrads or I run to one of my countless meetings.

I admit that I miss being a postdoc. I miss being in the lab from morning to evening, I miss having a supervisor who keeps me right (although my mentor at the Rowett is only a phone call away) and I miss the untroubled life of only being responsible for the next set of experiments. Of course, I do not miss the dreadful months before the contract comes to an end.

Despite all of this, I enjoy being a lecturer. While the holy grail is not as shiny and golden as I thought it would be, the journey was certainly worth it, and I would do it all over again. Next goal: professorship.


This article was compiled by Jo Edward Lewis. You can read more testimonies in the original article in our magazine, Physiology News.

Open education: a creative approach to learning and teaching

By Vivien Rolfe, Associate Head of Department, UWE Bristol, UK, @vivienrolfe

A longer version of this article originally appeared in our magazine, Physiology News.

Open education, a means of widening access to education and materials, is not a new idea. Universities and teaching institutions have been inviting the public through their doors for centuries, and in more recent times ‘open’ universities have further championed the widening of access to formal education.

Open education was a dominant philosophy and practice in the 1970s. Unstructured curricula fostered creativity and supported diversity in learning, and knowledge was shared beyond the institution. The present reiteration of open education has similar underpinning ideals: providing an education system that shares, and is more inclusive and equitable.

Children_learning_shutterstock

Open education – from content to practice

The relationship between shared open educational resources (OERs) and emerging open education practices is a hot topic of debate. Great work within schools, colleges and universities has clearly emerged through either the generation of openly licensed content (a good starting point), or the development of open practice and pedagogy.

A widely accepted framework for practice development is David Wiley’s ‘5 R’s’ (Wiley, 2014).  They stand for Retain (you control what happens to the resources you share) through to Reuse, Revise, Remix and Redistribute. This, in my experience, is a useful concept for teachers who aspire to develop their open practice

Open practice can extend the utility of our academic work within our institution, and even beyond the walls of our universities to a wider community of learners. In the UK, some notable examples include the University of Lincoln ‘Student as Producer’ project where students engaged as co-creators of open content, and the open photography course #Phonar at the University of Coventry which invited public collaboration and led to students working with professional communities as part of their learning.

shutterstock_378848968.jpg

Much of the UK activity stemmed from the 2009 – 2012 HEFCE-funded Open Educational Resource programme. Over 85 projects spanned most subject disciplines, and were seminal in building the community of open practitioners that thrives today by bringing them together in an annual conference organised by the Association of Learning Technology (#OERXX). I have reported the reach and impact of the OERs produced by these projects, and of using web marketing techniques to share content online (Rolfe, 2016).

Open practice for life science practicals

My recent work has explored open pedagogies in an attempt to address challenges facing laboratory practical teaching. Practicals are timetabled laboratory events, and it is well documented that teaching staff and technical teams struggle to address the gaps between school and university in terms of laboratory experience, for an ever-increasing number of students (Coward and Gray, 2014). Student criticisms include no buzz, repetitive nature and lack of social engagement (Wilson, Adams and Arkle, 2008).

UndergradScheme

So in my experience, what are some of the benefits and challenges of open educational practises in practicals?

Open education projects at De Montfort University included OERs on laboratory skills. Still accessible today via the project website and YouTube, these relatively low quality materials by today’s standards, were popular with students and boosted their confidence before entering the laboratory for the first time: “[Virtual Analytical Laboratory] has been very useful in easing my nerves before lab sessions” (Biomedical Science student, Rolfe, 2009). These resources were then embedded within the timetable with students working through workbooks prior to entering the lab. Soon, students were creating video of their own laboratory work and sharing these either informally with each other through social media, or as part of the project website. The laboratory technical teams also created resources in areas they thought students particularly struggled with. One of the benefits cited by staff was they needed to spend less time repeating basic instructions as students had an overview of the fundamental skills.

Other applications of open education included students accessing resources by QR codes at different workstations to introduce them to different techniques, which helped to cater for large student numbers in the lab in a more effective way. Students were also engaged in producing multiple-choice assessment questions, later shared as OERs accompanying resources on the project website.

Student_phone_photo_lab_shutterstock_EditorialOnly

Longer term, open education led to changes to the learning culture itself, with students taking control and implementing their own ideas, such as photographing histology images using iPhones for sharing as OER on the Google service Picasa, and later a Facebook discussion group. Some of the lasting impact of this work is the cross-university interest it generated – for example technology and arts students becoming interested in science projects, and the OER being available globally to support informal and formal learning, providing new insights and perspectives for students (Rolfe, 2016).

As more evidence is gathered as to the benefits and uses of OER and open practices, a new theoretical basis for open practical pedagogies may emerge. What is important is that we continue to openly share our case studies of teaching practice to build a fuller picture. That way, larger communities of teachers can grow and benefit:

“It has changed my practice in terms of whenever I’m doing anything I think how could this be an OER or how could it supplement what I’m doing”. (Microbiology lecturer).


Read the full-length version of this article in our magazine, Physiology News.

References

Coward, K., and Gray, J. V., 2014. Audit of Practical Work Undertaken Accessed 12 May 2017].

Rolfe, V., 2009. Development of a Virtual Analytical Laboratory (VAL) multimedia resource to support student transition to laboratory science at university. HEA Bioscience Case Study. pp. 1-5.

Rolfe, V., 2016.  Web Strategies for the Curation and Discovery of Open Educational Resources. Open Praxis, 8(4). [Accessed 12 May 2017].

Wiley, D., 2014. The Access Compromise and the 5th R. [online] [Accessed 12 May 2017].

Wilson, J., Adams, D. J. and Arkle, S., 2008. 1st Year Practicals–their role in developing future Bioscientists. Leeds, the Higher education Academy Centre for Bioscience. [online] [Accessed 12 May 2017].