Measuring a moving target: Symposium on Hormone Sensing

What do puberty, doping in athletics, and the meat industry have in common? The answer is hormones. Secreted into the blood by specialized organs and tissues, hormones communicate a bewildering array of signals to a myriad of target sites.

Two weeks ago, The Physiological Society brought together experts in physiology, endocrinology, chemistry, physics and engineering, to discuss how to produce a new generation of tools and methods for detecting hormones inside our bodies

“The biggest hurdle facing basic and clinical endocrinologists is how we can measure hormones inside the body,” said one of the symposium organizers, Timothy Wells, Senior Lecturer in Neuroscience at Cardiff University.

Addressed by UK and international experts in hormone-receptor interactions, light-based sensing and nanocarbon-based sensing, the Society’s symposium explored how these molecular interactions could be exploited to quantify the dynamic changes in circulating hormone levels.

 

Cutting edge work featured

One of the potential approaches was presented by Frank Vollmer and his colleagues from the Max Planck Institute for the Science of Light. He and his team are attempting to reach the ultimate limit of detection, by sensing single molecule interactions and the resultant changes in three-dimensional shape. Their new technique, which was published this week in Nature Photonics, may enable the detection of individual hormone molecules.

Thus, the day of talks highlighted just how far we’ve come since Ernest Starling coined the term hormone in 1905.

The event, titled “Novel approaches to Hormone Sensing, The Inaugural Bayliss-Starling Symposium,” was part of the society’s H3 symposia. The next symposium will be held on 15 November about one of the biggest discoveries in biotech, CRISPR. Visit our website for more info: http://www.physoc.org/crispr/

Prize Lecture Memoria – Edward Sharpey-Schafer

M0020242 Portrait of Sir E.A. Sharpey-Schafer

Sir Edward Albert Sharpey-Schafer (1850 –1935) was an English physiologist and Fellow of the Royal Society. Born Edward Schäfer, he studied under the physiologist William Sharpey and became the first Sharpey Scholar in 1873 at University College London (UCL). In 1874 he was appointed Assistant Professor of Practical Physiology at UCL where he went on to become Jodrell Professor. He was elected a Fellow of the Royal Society in 1878 at the age of just 28. Schäfer was appointed Chair of Physiology at the University of Edinburgh in 1899 where he would stay until his retirement. He was one of the nineteen founder members of the Physiological Society in 1876 and he also founded and edited [the Quarterly Journal of] Experimental Physiology from 1908 until 1933. Schäfer was knighted in 1913. He is renowned for his invention of the prone-pressure method or Schäfer method of artificial respiration. He was very active as a facilitator, mentor, coordinator, teacher and organiser through much of his career. He had started as a histologist and always emphasised the importance of structural knowledge. He was the co-discoverer (in 1894, with George Oliver) of adrenaline (as in the adrenal-derived, circulating hormone) and he coined the term ‘endocrine’ as the generic term for such secretions. He intuited (as did a few others, independently) that insulin must exist (i.e. a pancreatic hormone to account for diabetes mellitus) and coined the name (originally as ‘insuline’). (Banting and Best actually discovered what S-S and the others had predicted). Thus, he had a founding role in modern endocrinology. He also did important early work on the localisation of function (e.g. motor centres) to brain regions. After the death of his eldest son, John Sharpey Schafer, and in memory of his late professor William Sharpey, he changed his surname to Sharpey-Schafer in 1918. Sir Edward Albert Sharpey-Schafer died on 29 March 1935 aged 84. Funded by bequests from Sir Edward Sharpey-Schafer (1850–1935) and his daughter Miss GM Sharpey-Schafer and in memory of Sir Edward and his grandson Professor EP Sharpey-Schafer, The Physiological Society established the Sharpey-Schafer Prize Lecture. This is a triennial lecture given alternately by an established physiologist (preferably but not necessarily from abroad) and a young physiologist chosen by The Society.

Researcher in the Spotlight June 2016

Lisa at Merton

Dr Lisa Heather PhD, is a Diabetes UK RD Lawrence Fellow in the Department of Physiology, Anatomy and Genetics, University of Oxford. Her research revolves around metabolism and energy generation in the heart.

Lisa will give The Physiological Society Bayliss-Starling Prize Lecture ‘Cardiac metabolism in disease: All fuels are equal, but some fuels are more equal than others’ at our main meeting P16 in Dublin, Sunday 31 July 9:00 am.

 

 

What is your research about?

I study energy metabolism in the heart. Metabolism explains how we extract energy from the fuels we eat: how we convert glucose and fatty acids into ATP via a series of chemical reactions within the cell. When this process goes wrong the cell can become starved of energy, and ATP dependent processes – such as contraction – will be impaired. Abnormal cardiac energy metabolism occurs in a large number of diseases, including diabetes and heart failure. Understanding why these metabolic abnormalities occur and whether changing metabolism is beneficial for cardiac function is my area of research.

How did you come to be working in this field and was this something you always wanted to do?

My undergraduate degree was in Medical Biochemistry at the University of Surrey, and I had an amazing lecturer, Dr Jack Salway, teaching metabolism. He made the subject exciting and relevant, and made me want to pursue it further to become a ‘die-hard metabolist’. I moved to Oxford in 2003 and joined the lab of Professor Kieran Clarke, studying the effects of disease on cardiac metabolism. Kieran was (and still is) an excellent mentor, providing support whenever I needed it, but equally allowing me freedom to explore my own directions and stand on my own two feet.

When I first started in the field of metabolism it wasn’t a particularly fashionable field – everyone was focused on genetics, and metabolism was viewed as a subject where all the questions had already been answered. Scientific fashions change, and in the last 10 years metabolism has had a huge renaissance, mainly driven by discoveries in the cancer field. It’s an exciting time to be working in this area, new collaborations are emerging between diverse fields that have realised metabolism is influencing or being influenced by their disease or cellular process. Suddenly, having a good understanding of the fundamentals of metabolism is a powerful tool.

I have never considered leaving the field of metabolism as it’s the area I love, and when I set up my own group in 2011 I decided it was the field of diabetes, the ultimate metabolic disease, that I wanted to specialise in.

Why is your work important?

Metabolism underpins all cellular processes. It provides ATP for all active processes to occur, it provides the building blocks and intermediates for diverse chemical reactions, and provides substrates for post-translational modifications. Changes in metabolism have been implicated in many diverse diseases of all organs in the body. As stated by Steven McKnight in Science in 2010 “One simple way of looking at things is to consider that 9 questions out of 10 could be solved without thinking about metabolism at all, but the 10th question is simply intractable…. if you are ignorant about the dynamics of metabolism”.

Do you think your work can make a difference?

I really hope so. Understanding how a disease develops and progresses is the first step to working out how to prevent or reverse it.

What does a typical day involve?

A typical day can involve any combination of lab work, discussing data with students, planning new studies, writing and rewriting papers, teaching undergrads, and meetings. Each day is different and that’s one of the things I really enjoy about being an academic.

What do you enjoy most in your job?

I love the ‘Aha!’ moments. When you have been busy trying to work out why something has changed or the mechanism involved, and suddenly everything fits together and makes sense. When you have discovered something, however small, that wasn’t known before. It reminds me of those “magic eye” pictures, when you stare at it long enough that the blurry 2D pattern finally turns into a beautiful 3D image. The “Aha” moments are the reward for all those times the experiments didn’t work.

 What do enjoy the least?

On a day to day basis, I really hate having to collect liquid nitrogen from our outside cylinder! It’s the worst job! I generally really love my job and feel grateful that I get to do this every day.

Tell us something about you that might surprise us…

I really really really like designer shoes. If only Manolo Blahnik could make mitochondria-inspired pumps!

What advice would you give to students/early career researchers?

Do what you love. Being a scientist is a tough career, so you have to love it to deal with the challenges, such as paper rejections and lack of job security. Have faith in your own abilities. Be nice to people and help people when you can, people are then more likely to come to your assistance when you need them. Smile :)!

Prize Lecture Memoria – William Paton

451_WDM PatonSir William Drummond Macdonald Paton (1917 –1993), always known as Bill Paton, was an English physiologist, pharmacologist and Fellow of the Royal Society, considered by many to be one of the world’s greatest pharmacologists. He was responsible for discovering two new classes of drug that acted on nicotinic acetylcholine receptors. His theorised multiple types of nicotinic receptor (confirmed in the 1970s) formed the foundation of the development of Decamethonium, the first specific neuromuscular blocking drug and Hexamethonium, the first drug that specifically and safely lowered blood pressure. Paton was also charged with finding the solution to the problem of convulsions suffered by deep-sea divers if they went more than 200ft below sea-level, having discovered that the high pressure causing the convulsions could be reversed with anaesthetics. He was awarded a CBE in 1968 and knighted in 1979 for his work. Paton not only made countless discoveries but was also heavily involved in numerous public committees and had a special interest in the history of medicine. He made a substantial donation to The Society that founded the Paton Prize Fund for historical research on physiology and physiologists. Paton was Honorary Director of the Wellcome Institute for History of Medicine from 1983 to 1987. Sir William Drummold Macdonald Paton died on 17 October 1993. In 1994, The Physiological Society introduced the Paton Prize Lecture, this annual lecture commemorates Paton’s support and initiatives for promoting interest in the history of scientific experiments and ideas.